Answer:
0.252 m/s
Step-by-step explanation:
Applying the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
Note: From the question, The collision between the car and the train is an inelastic collision and as such, both move with a common velocity after collision.
mu+m'u' = V(m+m')................... Equation 1
Where m = mass of the train, u' = initial velocity of the train, m' = mass of the car, u' = initial velocity of the car, V = common velocity after collision.
make V the subject of the equation
V = (mu+m'u')/(m+m')............... Equation 2
Given: m = 270000 kg, u = 0.325 m/s, m' = 52500 kg, u' = -0.12 m/s
Substitute these values into equation 2
V = [(270000×0.325)+{52500(-0.12)}]/(270000+52500)
V = 81450/322500
V = 0.252 m/s