Answer:
Explanation:
Given that:
OA = 7 cm, AB = 6 cm. ∠A = 90°, OA = OC = 7 cm
Using Pythagoras theorem: OB² = OA² + AB²
OB² = 6² + 7²=85
OB = √85 = 9.22 cm
to find ∠O, we use sine rule:
![(AB)/(sin(O))=(OB)/(sin(A))\\ \\sin(O)=(AB*sin(A))/(OB)=(6*sin(90))/(9.22) =0.65 \\\\O=sin^(-1)0.65=40.6^o](https://img.qammunity.org/2021/formulas/mathematics/high-school/w22o9ftz43nsxv8hk4xp5uy8qjzvlg0nuo.png)
AOC is a minor sector with radius 7 cm and angle 40.6
The Area of the triangle OAB = 1/2 × base × height = 1/2 × OA × AB = 1/2 × 7 × 6 = 21 cm²
Area of sector OAC =
![(\theta)/(360)*\pi r^2=(40.6)/(360)*\pi *7^2=17.37 \ cm^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/2h560kbpe1kty8d5gfume1uxjyx0xxi3ih.png)
Area of shaded region = The Area of the triangle OAB - Area of sector OAC = 21 - 17.37 = 3.63 cm²
Perimeter of arc AC =
![(\theta)/(360)*2\pi r=(40.6)/(360)*2\pi *7=4.96\ cm](https://img.qammunity.org/2021/formulas/mathematics/high-school/7498it7c897wdbltm1esy7z5j7w16ws28c.png)
CB = OB - OC = 9.22 - 7 = 2.22
Perimeter of shaded region = AB + CB + arc AC = 6 + 2.22 + 4.96 = 13.18 cm