Answer:
![\large \boxed{\ \ (63)/(5) \ \ }](https://img.qammunity.org/2021/formulas/mathematics/college/do38owuxigj3ug7ako3t4ev1dbf41frw19.png)
Explanation:
Hello,
"Find the sum of the following infinite geometric series"
infinite
We will have to find the limit of something when n tends to
![+\infty](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x7t1ghaeop01daiwgdh58xhqghne7hslit.png)
geometric series
This is a good clue, meaning that each term of the series follows a geometric sequence. Let's check that.
The sum is something like
![\displaystyle \sum_(k=0)^(+\infty) a_k](https://img.qammunity.org/2021/formulas/mathematics/college/nqnsd03d0g1tgv0jlj0z3qgqwass8wmmrb.png)
First of all, we need to find an expression for
![a_k](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kc79zpglfybderh5eilqmryek6s6si0wgd.png)
First term is
![a_0=7](https://img.qammunity.org/2021/formulas/mathematics/college/4yl9kvj9kl3ndtbvcdr2u9kr9tu8tdajyh.png)
Second term is
![a_1=(4)/(9)\cdot a_0=7*\boxed{(4)/(9)}=(7*4)/(9)=(28)/(9)](https://img.qammunity.org/2021/formulas/mathematics/college/jfh4p59eylhqu6iy4x9dpr8ypq6d4nn9ir.png)
Then
![a_2=(4)/(9)\cdot a_1=(28)/(9)*\boxed{(4)/(9)}=(28*4)/(9*9)=(112)/(81)](https://img.qammunity.org/2021/formulas/mathematics/college/3axge85mrz3g87bw06ujln0vi43kzxsf3w.png)
and...
![a_3=(4)/(9)\cdot a_2=(112)/(81)*\boxed{(4)/(9)}=(112*4)/(9*81)=(448)/(729)](https://img.qammunity.org/2021/formulas/mathematics/college/iz6cqkns8rqegnzxypsi5oidrv81i9enkn.png)
Ok we are good, we can express any term for k integer
![a_k=a_0\cdot ((4)/(9))^k](https://img.qammunity.org/2021/formulas/mathematics/college/m0e7e5nsxgcfram35ac7ivvu7csacjplxi.png)
So, for n positive integer
![\displaystyle \sum_(k=0)^(n) a_k=\displaystyle \sum_(k=0)^(n) 7\cdot ((4)/(9))^k=7\cdot (1-((4)/(9))^(n+1))/(1-(4)/(9))=(7*9*[1-((4)/(9))^(n+1)])/(9-4)=(63)/(5)\cdot [1-((4)/(9))^(n+1)}]](https://img.qammunity.org/2021/formulas/mathematics/college/27ytww2uqt993lzsbal38i8hi9c2879n30.png)
And the limit of that expression when n tends to
is
![\large \boxed{\ \ (63)/(5) \ \ }](https://img.qammunity.org/2021/formulas/mathematics/college/do38owuxigj3ug7ako3t4ev1dbf41frw19.png)
as
![(4)/(9)<1](https://img.qammunity.org/2021/formulas/mathematics/college/3iw9w9vdwuu4a8wzngehymicrmt14mumjl.png)
Hope this helps.
Do not hesitate if you need further explanation.
Thank you