229k views
2 votes
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used. Consider the functions given below. VIEW FILE ATTACHED

Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used-example-1

1 Answer

4 votes

Answer: see below

Explanation:


P(x)=(2)/(3x-1)\qquad \qquad Q(x)=(6)/(-3x+2)\\

P(x) ÷ Q(x)


(2)/(3x-1)/ (6)/(-3x+2)\\\\\\=(2)/(3x-1)* (-3x+2)/(6)\\\\\\=\large\boxed{(-3x+2)/(3(3x-1))}

P(x) + Q(x)


(2)/(3x-1)+ (6)/(-3x+2)\\\\\\=(2)/(3x-1)\bigg((-3x+2)/(-3x+2)\bigg)+ (6)/(-3x+2)\bigg((3x-1)/(3x-1)\bigg)\\\\\\=(2(-3x+2)+6(3x-1))/((3x-1)(-3x+2))\\\\\\=(-6x+4+18x-6)/((3x-1)(-3x+2))\\\\\\=(12x-2)/((3x-1)(-3x+2))\\\\\\=\large\boxed{(2(6x-1))/((3x-1)(-3x+2))}

P(x) - Q(x)


(2)/(3x-1)- (6)/(-3x+2)\\\\\\=(2)/(3x-1)\bigg((-3x+2)/(-3x+2)\bigg)- (6)/(-3x+2)\bigg((3x-1)/(3x-1)\bigg)\\\\\\=(2(-3x+2)-6(3x-1))/((3x-1)(-3x+2))\\\\\\=(-6x+4-18x+6)/((3x-1)(-3x+2))\\\\\\=(-24x+10)/((3x-1)(-3x+2))\\\\\\=\large\boxed{(-2(12x-5))/((3x-1)(-3x+2))}

P(x) · Q(x)


(2)/(3x-1)* (6)/(-3x+2)\\\\\\=\large\boxed{(12)/((3x-1)(-3x+2))}

User Debflav
by
7.2k points

No related questions found