Answer:
n = 8
Explanation:
The given sequence, 2, 6, 18, 54. . ., is a geometric sequence.
It has a common ratio of 3 =>
![(6)/(2) = (18)/(6) = (54)/(18) = 3](https://img.qammunity.org/2021/formulas/mathematics/college/k36qxujjsyoct6kv6x14ib7i2wb3kt6xd7.png)
Thus, the sum of the first n terms of a geometric sequence is given as
![S_n = (a_1(1 - r^n))/(1 - r)](https://img.qammunity.org/2021/formulas/mathematics/college/bj3fjmbnn63en6ou16temolxlzaclo64bb.png)
Where,
= first term of the series = 2
r = common ratio = 3
= sum of the first n terms = 6,560
Plug in the above values into the formula
![6,560 = (2(1 - 3^n))/(1 - 3)](https://img.qammunity.org/2021/formulas/mathematics/college/wmdk9gfmgf6awjemy22ptjclspyzmr7kyr.png)
![6,560 = (2(1 - 3^n))/(-2)](https://img.qammunity.org/2021/formulas/mathematics/college/fbtwdrngsx7wg5rzj32s3yqzolu5o0700j.png)
![6,560 = (1 - 3^n)/(-1)](https://img.qammunity.org/2021/formulas/mathematics/college/mlwutstfo23c681d6mt2mb54qiucg8yihq.png)
Multiply both sides by -1
![-6,560 = 1 - 3^n](https://img.qammunity.org/2021/formulas/mathematics/college/idtkgkpcuzu7nbr231xybd5xwzv50ran7r.png)
Subtract 1 from both sides
![-6,560 - 1 = - 3^n](https://img.qammunity.org/2021/formulas/mathematics/college/9s1t3w97uv8pj7p4x5d3bwzrtsh1yp6gla.png)
![-6,561 = - 3^n](https://img.qammunity.org/2021/formulas/mathematics/college/xe50kggf6n48yemrmf8l6qyap4de5twov8.png)
![6,561 = 3^n](https://img.qammunity.org/2021/formulas/mathematics/college/pl3w6fkd6dh1tofg6oaf86i8i0945gjt9o.png)
Evaluate
![3^8 = 3^n](https://img.qammunity.org/2021/formulas/mathematics/college/uzrq5cdzay2ifwzh0sr49mawwmzwtkktym.png)
3 cancels 3
![8 = n](https://img.qammunity.org/2021/formulas/mathematics/college/di99hgt0nr047ur820rvo11jv7qf5wa90b.png)
The value of n = 8