Answer:
The confidence interval is
![-11.34 < \mu_1 -\mu_2 < -10.86](https://img.qammunity.org/2021/formulas/mathematics/college/kmji0zjqwmmft2sm8kuh6w855wpxl680my.png)
Explanation:
From the question we are told that
The first sample size is
![n_1 = 146](https://img.qammunity.org/2021/formulas/mathematics/college/qc1sqggjrqiuee59fttjk7xz2dt63cde5g.png)
The second sample size is
![n_2 = 180](https://img.qammunity.org/2021/formulas/mathematics/college/d0yz5qh3ilu2w9hgxl7j11xrvdfxytpn3a.png)
The first sample mean is
![\= x_1 = 51.6](https://img.qammunity.org/2021/formulas/mathematics/college/qijydza4ux52li5khkc86swxnc1x1y5iu8.png)
The second sample mean is
![\= x_2 = 62.7](https://img.qammunity.org/2021/formulas/mathematics/college/gb3r70yv15sfbl2qz6kuu2uhtc3ox499qd.png)
The first standard deviation is
![\sigma _1 = 9.42](https://img.qammunity.org/2021/formulas/mathematics/college/2fc7dccshuthph1tx5k3tr8lac7x3t02ut.png)
The second standard deviation is
![\sigma _2 = 14.5](https://img.qammunity.org/2021/formulas/mathematics/college/o1y6i0lq8oh0olxknl41j4ksviq81mwj27.png)
Given that the confidence level is 98% then the significance level is mathematically evaluated as
![\alpha = 2 \%](https://img.qammunity.org/2021/formulas/mathematics/college/mv33tsfv1ujmnv2unt5re219ls923fjm9v.png)
![\alpha = 0.02](https://img.qammunity.org/2021/formulas/mathematics/college/j8o7utgnqob5gmu2tkllwj4bnoixlwhs2n.png)
Next we obtain the critical value of
from the z-table , the value is
![Z_{(\alpha )/(2) } = 2.33](https://img.qammunity.org/2021/formulas/mathematics/college/u5j3jatmqihgqo6pjmhrxrn9ya3lqk0d2s.png)
The reason we are obtaining critical value of
![(\alpha )/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/8jirfxadtrkun5p30g1vbozof4ilht6c2y.png)
instead of
![\alpha](https://img.qammunity.org/2021/formulas/physics/high-school/hnta6o297p6x6k4chhffnl4rkouajc67r4.png)
is because
![\alpha](https://img.qammunity.org/2021/formulas/physics/high-school/hnta6o297p6x6k4chhffnl4rkouajc67r4.png)
represents the area under the normal curve where the confidence level interval (
) did not cover which include both the left and right tail while
![(\alpha )/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/8jirfxadtrkun5p30g1vbozof4ilht6c2y.png)
is just the area of one tail which what we required to calculate the margin of error
NOTE: We can also obtain the value using critical value calculator (math dot armstrong dot edu)
Generally the margin of error is mathematically represented as
![E = Z_{(\alpha )/(2) } * \sqrt{ (\sigma_1^2)/(n_1^2) + (\sigma_2^2)/(n_2^2) }](https://img.qammunity.org/2021/formulas/mathematics/college/xnndazytv7ctn9z78p5b0a7cdo4gxh5he4.png)
substituting values
![E = 2.33 * \sqrt{ (9.42^2)/(146^2) + (14.5^2)/(180^2) }](https://img.qammunity.org/2021/formulas/mathematics/college/awlr359u5o3b84bs8nj1ekna91y32wp0jy.png)
substituting values
![E = 2.33 * \sqrt{ (9.42^2)/(146^2) + (14.5^2)/(180^2) }](https://img.qammunity.org/2021/formulas/mathematics/college/awlr359u5o3b84bs8nj1ekna91y32wp0jy.png)
![E = 0.2405](https://img.qammunity.org/2021/formulas/mathematics/college/x8w77gfdo8qrn19p12ej4mnf1obdt47ezw.png)
The 98% confidence interval is mathematically represented as
![(\= x _ 1 - \= x_2 ) - E < \mu_1 -\mu_2 < (\= x _ 1 - \= x_2 ) + E](https://img.qammunity.org/2021/formulas/mathematics/college/q927y5kewrer1495wup25zshh713z0nni3.png)
substituting values
![(51.6 - 62.7) - 0.2405 < \mu_1 -\mu_2 < (51.6 - 62.7) + 0.2405](https://img.qammunity.org/2021/formulas/mathematics/college/8uofy8czn49tdb2m4f4vwl7jbaz3bfv0n9.png)
![-11.34 < \mu_1 -\mu_2 < -10.86](https://img.qammunity.org/2021/formulas/mathematics/college/kmji0zjqwmmft2sm8kuh6w855wpxl680my.png)