Answer:
2 triangles are possible.
Explanation:
Given
a=6
b=10
A=33°
To find:
Number of triangles possible ?
Solution:
First of all, let us use the sine rule:
As per Sine Rule:
![(a)/(sinA)=(b)/(sinB)](https://img.qammunity.org/2021/formulas/mathematics/high-school/y7bfo7wm025bsx1mbg6kr9kg17jjr35w71.png)
And let us find the angle B.
![(6)/(sin33)=(10)/(sinB)\\sinB = (10)/(6)* sin33\\B =sin^(-1)(1.67 * 0.545)\\B =sin^(-1)(0.9095) =65.44^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/8q26vcfli4jgswwfaifajf9a2ypepads39.png)
This value is in the 1st quadrant i.e. acute angle.
One more value for B is possible in the 2nd quadrant i.e. obtuse angle which is: 180 - 65.44 =
![114.56^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/3qvxohizm8xev6w1lz0ebe6weyah2i82lm.png)
For the value of
, let us find
:
![\angle A+\angle B+\angle C = 180^\circ\\\Rightarrow 33+65.44+\angle C = 180\\\Rightarrow \angle C = 180-98.44 = 81.56^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/60342kllx1crhwe2tkp3wgi37h40hzwfrj.png)
Let us find side c using sine rule again:
![(6)/(sin33)=(c)/(sin81.56^\circ)\\\Rightarrow c = 11.02 * sin81.56^\circ = 10.89](https://img.qammunity.org/2021/formulas/mathematics/high-school/sf3zfafgbs4my59993b4kdw00gw0uv8e4r.png)
So, one possible triangle is:
a = 6, b = 10, c = 10.89
A=33°,
A=65.44°,
C=81.56°
For the value of
![\angle B =](https://img.qammunity.org/2021/formulas/mathematics/high-school/3wns6hgdz0cjlzrzo9tdslf2joothfph40.png)
, let us find
:
![\angle A+\angle B+\angle C = 180^\circ\\\Rightarrow 33+114.56+\angle C = 180\\\Rightarrow \angle C = 180-147.56 = 32.44^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/3i8phivxqg0ei7knn5jjdvm2xcft8djm9j.png)
Let us find side c using sine rule again:
![(6)/(sin33)=(c)/(sin32.44^\circ)\\\Rightarrow c = 11.02 * sin32.44^\circ = 5.91](https://img.qammunity.org/2021/formulas/mathematics/high-school/e9wj1ogmvv862lx9c5hida5gg3y2v31h50.png)
So, second possible triangle is:
a = 6, b = 10, c = 5.91
A=33°,
A=114.56°,
C=32.44°
So, answer is : 2 triangles are possible.