Answer:
0.83 m or 5.57 m
Step-by-step explanation:
Destructive interference will occur when the distances from the speakers differ by 1/2 wavelength.
The length of 1 cycle of 72.4 Hz is ...
λ = v/f = (343 m/s)/(72.4 Hz) ≈ 4.738 m
So, the distance of the listener from speaker B is ...
3.2 m ± (4.738 m)/2 = {0.83 m, 5.57 m} . . . either of these distances
_____
The location could be at additional multiples of 4.738 m, but we think not. The sound intensity drops off with the square of the distance from the speaker, so identical sound waves from the speakers will sound quite different at different distances from the speakers. For best interference, the distances need to be as close to the same as possible. That will be at 3.2 m and 5.57 m.
_____
Comment on the speed of sound
We don't know what speed you are to use for the speed of sound. We have used 343 m/s. Some sources use 340 m/s, which will give a result different by 2 or 3 cm.