Answer:
Option A. 1.1×10¯²⁴ N
Step-by-step explanation:
The following data were obtained from the question:
Charge 1 (q1) = - 4e
Charge 2 (q2) = + 3e
Distance apart (r) = 0.05 m
Electric field constant (K) = 9×10⁹ N•m²/C²
Electron (e) = 1.6×10¯¹⁹ C.
Electric Force (F) =..?
Next, we shall determine the value of the two charges.
This is illustrated below:
Charge 1 (q1) = - 4e
Charge 1 (- q1) = 4e
Electron (e) = 1.6×10¯¹⁹ C.
Charge 1 (- q1) = 4 × 1.6×10¯¹⁹ C.
Charge 1 (- q1) = 6.4×10¯¹⁹ C.
Charge 2 (q2) = + 3e
Electron (e) = 1.6×10¯¹⁹ C.
Charge 2 (q2) = 3 × 1.6×10¯¹⁹ C.
Charge 2 (q2) = 4.8×10¯¹⁹ C.
Finally, we shall determine the value of the electric force. This can be obtained as shown below:
Charge 1 (- q1) = 6.4×10¯¹⁹ C.
Charge 2 (q2) = 4.8×10¯¹⁹ C.
Electric field constant (K) = 9×10⁹ N•m²/C².
Distance apart (r) = 0.05 m
Electric Force (F) =..?
F = Kq1q2 /r²
F = (9×10⁹× 6.4×10¯¹⁹× 4.8×10¯¹⁹)/(0.05)²
F = 1.1×10¯²⁴ N
Therefore, the electric force between the two point charge is 1.1×10¯²⁴ N