24.5k views
2 votes
Simplify the expression.
Write your answer without negative exponents. NEED AN ANSWER ASAP​

Simplify the expression. Write your answer without negative exponents. NEED AN ANSWER-example-1
User Jakadinho
by
4.5k points

2 Answers

2 votes

Answer:


\boxed{(-3b^4 )/(a^6 )}

Explanation:


(-18a^(-8)b^(-3))/(6a^(-2)b^(-7))


(-18)/(6) * (a^(-8))/(a^(-2)) * (b^(-3))/(b^(-7))


-3 * (a^(-8))/(a^(-2)) * (b^(-3))/(b^(-7))

Apply the law of exponents, when dividing exponents with same base, we subtract the exponents.


-3 * a^(-8-(-2)) * b^(-3- (-7))


-3 * a^(-8+2) * b^(-3+7)


-3 * a^(-6) * b^(4)


{-3a^(-6)b^(4)}

The answer should be without negative exponents.


a^(-6)=(1)/(a^6 )


(-3b^4 )/(a^6 )

User Aaron Shen
by
4.7k points
5 votes

Answer:


- \frac{3 {b}^(4) }{ {a}^(6) }

Explanation:


\frac{ - 18 {a}^( - 8) {b}^( - 3) }{6 {a}^( - 2) {b}^( - 7) }

Reduce the fraction with 6


\frac{ - 3 {a}^( - 8) {b}^( - 3) }{ {a}^( - 2) {b}^( - 7) }

Simplify the expression


\frac{ - 3 {b}^(4) }{ {a}^(6) }

Use
( - a)/(b) = (a)/( - b) = - (a)/(b \: ) to rewrite the fraction


- \frac{3 {b}^(4) }{ {a}^(6) }

Hope this helps...

Best regards!!

User Daniel Neagu
by
4.4k points