234k views
5 votes
If 180°<α<270°, cos ⁡α= −8/17, 270°<β<360°, and sin β= −4/5, what is sin⁡(α+β)?

User Eldshe
by
4.9k points

1 Answer

4 votes

Answer:


\sin(\alpha+\beta) = -0.153

Explanation:

Let determine the angles behind each trigonometric expression:


\cos \alpha = -(8)/(17)


\alpha = \cos^(-1)\left(-(8)/(17) \right)

Given that
180^(\circ)< \alpha < 270^(\circ), the value of
\alpha is:


\alpha \approx 241.928^(\circ)


\sin \beta = -(4)/(5)


\beta = \sin^(-1)\left(-(4)/(5) \right)

Given that
270^(\circ)< \beta <360^(\circ), the value of
\beta is:


\beta \approx 306.870^(\circ)

The sine function of the sum of angles can be determined by the following identity:


\sin(\alpha + \beta)=\sin \alpha \cdot \cos \beta + \sin \beta \cdot \cos \alpha

If
\alpha \approx 241.928^(\circ) and
\beta \approx 306.870^(\circ), then:


\sin (241.928^(\circ)+306.870^(\circ)) = (\sin 241.928^(\circ)) \cdot (\cos 306.870^(\circ)) + (\sin 306.870^(\circ))\cdot (\cos 241.928^(\circ))
\sin(241.928^(\circ)+306.870^(\circ)) = -0.153

User God
by
5.9k points