Answer:
The CSI is wrong.
Step-by-step explanation:
1. Find the volume of the pool
The formula for the volume of a cylinder is V = πr²h .
D = 12 m; h = 10 m
r = D/2 = (12 m/2) = 6.0 m
V = πr²h = π × (6.0 m)² × 10 m = π × 36 m²× 10 m = 360π m³ = 1100 m³
= 1.1. × 10⁶ L
2. Calculate the moles of OH⁻
n = cV = 1.0 × 10⁻² mol·L⁻¹ × 1.3 × 10⁶ L = 11 000 mol of OH⁻
3. Calculate the moles of acetic acid needed for neutralization
HA + OH⁻ ⟶ A⁻ + H₂O
The molar ratio of is 1 mol HA:1 mol OH⁻, so you need 11 000 moL of acetic acid.
4. Calculate the actual moles of acetic acid
You have four 5 L jugs of acetic acid pH 2 .
Volume = 20 L
[H⁺] = 10⁻² mol·L⁻¹ = 0.01 mol·L⁻¹
(a) Set up an ICE table
HA + H₂O ⇌ A⁻ + H₃O⁺
I/mol·L⁻¹: c 0 0
I/mol·L⁻¹: - 0.01 +0.01 +0.01
I/mol·L⁻¹: c - 0.01 0.01 0.01
![K_{\text{a}} = \frac{\text{[A]}^(-)\text{[H$_(3)$O$^(+)$]}}{\text{[HA]}} = 1.76 * 10^(-5)](https://img.qammunity.org/2021/formulas/chemistry/college/1nrri63y5eqfiri85ixjd88b3xx3p9yoxy.png)
(b) Calculate the concentration of acetic acid
![\begin{array}{rcl}\frac{\text{[A]}^(-)\text{[H$_(3)$O$^(+)$]}}{\text{[HA]}}& = & 1.76 * 10^(-5)\\\\(0.01* 0.01)/(c)& = & 1.76 * 10^(-5)\\\\1 * 10^(-4) & = & 1.76 * 10^(-5)c\\c & = & (1 * 10^(-4))/(1.76 * 10^(-5))\\\\ & = & \text{6 mol/L}\\\end{array}](https://img.qammunity.org/2021/formulas/chemistry/college/vcjcm93jkqhwbaa1ck23k14g3498a99qjh.png)
The concentration of the acetic acid is 6 mol·L⁻¹
(c) Calculate the moles of acetic acid

You have 100 mol of acetic acid.
The CSI is wrong.
You don't have enough acetic acid to neutralize the pool.