93.7k views
4 votes
Write the equation of the circumference that meets the condition: Center on the line: x -4y = 1 And it passes through the points A (3,7) and B (5,5)

1 Answer

3 votes

Answer:

(x + 3)² + (y + 1)² = 100

Explanation:

Equation of a circle is:

(x − h)² + (y − k)² = r²

where (h, k) is the center of the circle and r is the radius.

The center is on the line x − 4y = 1, so:

h − 4k = 1

h = 1 + 4k

(x − 1 − 4k)² + (y − k)² = r²

Two points on the line are (3, 7) and (5, 5), so:

(3 − 1 − 4k)² + (7 − k)² = r²

(5 − 1 − 4k)² + (5 − k)² = r²

Set the equations equal:

(3 − 1 − 4k)² + (7 − k)² = (5 − 1 − 4k)² + (5 − k)²

(2 − 4k)² + (7 − k)² = (4 − 4k)² + (5 − k)²

4 − 16k + 16k² + 49 − 14k + k² = 16 − 32k + 16k² + 25 − 10k + k²

4 − 16k + 49 − 14k = 16 − 32k + 25 − 10k

53 − 30k = 41 − 42k

12k = -12

k = -1

h = 1 + 4k

h = -3

(3 − 1 − 4k)² + (7 − k)² = r²

(3 − 1 + 4)² + (7 + 1)² = r²

6² + 8² = r²

r = 10

Therefore, the equation of the circle is:

(x + 3)² + (y + 1)² = 10²

Write the equation of the circumference that meets the condition: Center on the line-example-1
User Jeff Smith
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories