Answer:
The probability is
![P(X \ge 20 ) = 0.3707](https://img.qammunity.org/2021/formulas/mathematics/college/5yhm46l76r88fvbtglsdbnigjkdufx111c.png)
Explanation:
From the the question we are told that
The population proportion is p = 0.60
The sample size is n = 31
The mean is evaluated as
![\mu = n * p](https://img.qammunity.org/2021/formulas/mathematics/college/ababttwmm43adgeogrbxifrc9ywphoxwlx.png)
substituting values
![\mu = 31 *0.60](https://img.qammunity.org/2021/formulas/mathematics/college/1wowf6w4sjq287vucn0yndxi7gg3cp79z4.png)
![\mu = 18.6](https://img.qammunity.org/2021/formulas/mathematics/college/1evruw46t42n641x4go34jzoj6y6drmgrw.png)
The standard deviation is evaluated as
![\sigma = √(n * p * (1- p ))](https://img.qammunity.org/2021/formulas/mathematics/college/b1hznw7b15qlktq43mannlyixajum0vcof.png)
substituting values
![\sigma = √(31 * 0.6 * (1- 0.6 ))](https://img.qammunity.org/2021/formulas/mathematics/college/4ptpwzoie8198twmrlngk7ts5kulu7s5bt.png)
![\sigma = 2.73](https://img.qammunity.org/2021/formulas/mathematics/college/po5c3nqpis1702xk5t70k8bw96siekwez9.png)
The the probability that at least 20 of them have looked at their score in the past six months is mathematically represented as
![P(X \ge 20) = 1- P(X < 20)](https://img.qammunity.org/2021/formulas/mathematics/college/vvjc4pcu8a2dj1tcozi26kwd7y4p1t1ucz.png)
applying normal approximation we have that
![P(X \ge 20) = 1- P(X < (20-0.5))](https://img.qammunity.org/2021/formulas/mathematics/college/wckkyfdt3kjq7xxkdra55e6rex1tpbnaab.png)
Standardizing
![1 - P(X < 20) = 1 - P((X - \mu )/(\sigma) < (19.5 - \mu )/(\sigma ) )](https://img.qammunity.org/2021/formulas/mathematics/college/1lxal11x8w7oue9taza3aqp4ierlxfay6s.png)
![1 - P(X < 20) = 1 - P(Z < (19.5 - 18.6 )/(2.73 ) )](https://img.qammunity.org/2021/formulas/mathematics/college/xufric2ylwbwmkeewyn9ahg1dtc3ttb3v0.png)
![1 - P(X < 20) = 1 - P(Z < 0.33)](https://img.qammunity.org/2021/formulas/mathematics/college/zf14voo5ajedoeoav0bwybgd529io7pex3.png)
Form the standardized normal distribution table we have that
= 0.6293
=>
![P(X \ge 20 ) = 1- 0.6293](https://img.qammunity.org/2021/formulas/mathematics/college/tzglfqq7nl2syjx1oguwfgycjvtoz4ptwr.png)
=>
![P(X \ge 20 ) = 0.3707](https://img.qammunity.org/2021/formulas/mathematics/college/5yhm46l76r88fvbtglsdbnigjkdufx111c.png)