Answer:
![\boxed{x=-3} \\ \boxed{y=4}](https://img.qammunity.org/2021/formulas/mathematics/college/t97tsh5v1i59p63zyiu8yad1rvnw6kgfya.png)
Explanation:
Axis of symmetry is a line that cuts the parabola in half touching the vertex.
Quadratic forms ⇒ y = ax² + bx + c or x = ay² + by + c
Axis of symmetry ⇒ x =
or y =
![(-b)/(2a)](https://img.qammunity.org/2021/formulas/biology/high-school/n8rtnzuyl7yx9aho68yk22ysxbbzemddxo.png)
First problem:
y = -3(x+3)²-2
Write in quadratic form ⇒ y = ax² + bx + c
y = -3(x² + 6x + 9) - 2
y = -3x² -18x - 27 - 2
y = -3x² -18x - 29
a = -3, b = -18
Find axis of symmetry.
![x= (-b)/(2a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kk4ovwfoiwiarj9qzgg3r5i6zstx1yr9u2.png)
![x=(--18)/(2(-3))](https://img.qammunity.org/2021/formulas/mathematics/college/l16b6vuw5zqi466z7300daipwthl13wgtb.png)
![x=(18)/(-6)=-3](https://img.qammunity.org/2021/formulas/mathematics/college/c2k011z9wlowso1x89oi6b568e4vk7dnq7.png)
Second problem:
x = -4(y -4)² +6
Write in quadratic form ⇒ x = ay² + by + c
x = -4(y² - 18y + 16) + 6
x = -4y² + 32y - 64 + 6
x = -4y² + 32y - 58
a = -4, b = 32
Find axis of symmetry.
![y= (-b)/(2a)](https://img.qammunity.org/2021/formulas/mathematics/college/jz2lxnkgagpe61lma4189ayitsgegjckpw.png)
![y=(-32)/(2(-4))](https://img.qammunity.org/2021/formulas/mathematics/college/nbo39d5omjxvapu0nuztvh6uq51yfda4px.png)
![y=(-32)/(-8)=4](https://img.qammunity.org/2021/formulas/mathematics/college/g05mj5q4kef3oglsh0tn0n6t2cj66uyauy.png)