Looks like the equation is
![y(t)+9\displaystyle\int_0^te^(9(t-v))y(v)\,\mathrm dv=\sin(3t)](https://img.qammunity.org/2021/formulas/mathematics/college/g5cwh6g4vxbvjem78hmo93b865w22gbdgy.png)
Differentiating both sides yields the linear ODE,
![y'(t)+9e^(9(t-t))y(t)=3\cos(3t)](https://img.qammunity.org/2021/formulas/mathematics/college/h79pxv228v0yqu2c9wgk4nwk3if4whgnjo.png)
or
![y'(t)+9y(t)=3\cos(3t)](https://img.qammunity.org/2021/formulas/mathematics/college/4xe9d0s70z2n81ibczazyi2uiropb6m8f5.png)
Multiply both sides by the integrating factor
:
![e^(9t)y'(t)+9e^(9t)y(t)=3e^(9t)\cos(3t)](https://img.qammunity.org/2021/formulas/mathematics/college/q1lmpddjgwpvdfxx6tiopj1ias43pobawy.png)
![\left(e^(9t)y(t)\right)'=3e^(9t)\cos(3t)](https://img.qammunity.org/2021/formulas/mathematics/college/gwcho29djd5dtma1ylmjvkh46lgodwfrdn.png)
Integrate both sides, then solve for
:
![e^(9t)y(t)=\frac1{10}e^(9t)(\sin(3t)+3\cos(3t))+C](https://img.qammunity.org/2021/formulas/mathematics/college/ufkuyth5homo09ufrz0j4ddr6i004s5c67.png)
![y(t)=(\sin(3t)+3\cos(3t))/(10)+Ce^(-9t)](https://img.qammunity.org/2021/formulas/mathematics/college/4t24k4tj8qocsg909kar7qylsyowlkohtm.png)
The given answer choices all seem to be missing C, so I suspect you left out an initial condition. But we can find one; let
, then the integral vanishes and we're left with
. So
![0=(0+3)/(10)+C\implies C=-\frac3{10}](https://img.qammunity.org/2021/formulas/mathematics/college/hcu47f2a49vy228qr0hx76z6hjio0f89qs.png)
So the particular solution is
![y(t)=(\sin(3t)+3\cos(3t)-3e^(-9t))/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/un0c2myk4b9wkk51rb7p949o3mv0ga2vc1.png)