178k views
1 vote
The area of the region under the curve of the function f(x)=5x+7 on the interval [1,b] is 88 square units, where b>1. What is the value of b.

User Jgleeson
by
8.5k points

2 Answers

5 votes

Answer:5

Explanation:

got it right

User Sergio Majluf
by
8.1k points
4 votes

Answer:


\displaystyle b = 5

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^b_1 {5x + 7} \, dx = 88

Step 2: Solve

  1. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle \int\limits^b_1 {5x} \, dx + \int\limits^b_1 {7} \, dx = 88
  2. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle 5 \int\limits^b_1 {x} \, dx + 7 \int\limits^b_1 {} \, dx = 88
  3. [Integrals] Integration Rule [Reverse Power Rule]:
    \displaystyle 5 \bigg( (x^2)/(2) \bigg) \bigg| \limits^b_1 + 7(x) \bigg| \limits^b_1 = 88
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle 5 \bigg( (b^2)/(2) - (1)/(2) \bigg) + 7(b - 1) = 88
  5. Simplify:
    \displaystyle (5b^2)/(2) - (5)/(2) + 7b - 7 = 88
  6. Isolate:
    \displaystyle (5b^2)/(2) + 7b = (195)/(2)
  7. Solve:
    \displaystyle b = (-39)/(5) ,\ 5

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User MRX
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories