Answer:
![x = 5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sujnxaspfa8gos6wnx2ntn2ley38gfuk9z.png)
Explanation:
Given
Shape: Parallelogram PQRS
![PQ = x^2 - 10](https://img.qammunity.org/2021/formulas/mathematics/middle-school/s70k3994u4zcgu369w7hpgqe088a07p43n.png)
![SR = 3x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2nhrm8tizjtcq69jxww1pvx5e1py16yswm.png)
Required
Find all possible values of x
Every parallelogram have parallel and equal opposite sides;
From the given parameters, one can easily deduce that PQ and SR are opposite sides;
This implies that
![PQ = SR](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xwy0azw9eq7xj0ku9mtrlmpmha6kf0lhom.png)
Substitute values of PQ and SR
![x^2 - 10 = 3x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qmqq7gcqgk17zlo6k6e2c8aftyp5lfx3wq.png)
Subtract 3x from both sides
![x^2 - 10 -3x = 3x - 3x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dscsdnhlrpnpahq78mqjb0nbao2sxepu92.png)
![x^2 - 10 -3x = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3nme327mtv3klvlcd4a785ymn61wta36a3.png)
Rearrange
![x^2 -3x- 10 = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vfycv1922gs015w1f8vapzsbewc0enwvcr.png)
Now, we have a quadratic equation;
Expand the above expression
![x^2 +2x-5x- 10 = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qfsaec9baaml58gyx0u1i0htqzjw2hs3xm.png)
Factorize
![x(x+2)-5(x+2) = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/27d6rbjvbb18njmtxgg8i6tki3y4gjvr7s.png)
![(x-5)(x+2) = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vyorbvtlmbrpy0r9xhugv4764m5xw4shcj.png)
or
![x + 2 = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mctc2igqi9cgxrxpr6o99c8jpqrfqzuqpb.png)
Solve for x in both cases
or
![x = -2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gwhgznrljbp2rw12g6209qbhw89lvralom.png)
But x can't be negative;
So, the possible value of x is
![x = 5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sujnxaspfa8gos6wnx2ntn2ley38gfuk9z.png)