Answer:
Area of the triangle WXY = 365.3 mm²
Explanation:
By applying Sine rule in the given triangle XYW,
![\frac{\text{SinY}}{\text{WX}}=\frac{\text{SinX}}{\text{YW}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/jgmbqhjf85r3j8vtmm716pa6omq0uva9bi.png)
![\frac{\text{Sin70}}{\text{WX}}=\frac{\text{Sin43}}{\text{24}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/h85e4awyw4j1z3xg100kuhlfriv2r9wfap.png)
WX =
![\frac{24.\text{Sin70}}{\text{Sin43}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/38k6zxczo4lbi5rwahd40b28n1h1aauqb4.png)
= 33.068 mm
= 33.07 mm
Area of a triangle =
![(1)/(2)a.b.\text{Sin}\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/e9zhpp1qf3atqbn7q7olflpacqpxgodrc4.png)
where a and b are the sides of the triangle and θ is the angle between the sides a and b.
Area =
![(1)/(2)(33.07)(24)\text{SinW}](https://img.qammunity.org/2021/formulas/mathematics/high-school/29m0261n8erhkr28mqt1yaydgszlpbelz4.png)
Since, m∠X + m∠Y + m∠W = 180°
m∠W = 180 - (43 + 70)
= 67°
Area of the triangle WXY =
![12* (33.07)\text{Sin67}](https://img.qammunity.org/2021/formulas/mathematics/high-school/prmij8fh5y7uoxfg4tpgqr14p3ncu193oe.png)
= 365.29 mm²
≈ 365.3mm²