39.9k views
2 votes
Approximate the stationary matrix S for the transition matrix P by computing powers of the transition matrix P.

P = [0.31 0.69
0.18 0.82]
P^4 = ______
(Type an integer or decimal for each matrix element. Round to four decimal places as needed.)
Continue taking powers of P until S can be determined
S = ______
(Type an integer or decimal for each matrix element. Round to four decimal places as needed.)

User Jonline
by
7.3k points

1 Answer

5 votes

Answer:

S = [0.2069,0.7931]

Explanation:

Transition Matrix:


P=\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]

Stationary matrix S for the transition matrix P is obtained by computing powers of the transition matrix P ( k powers ) until all the two rows of transition matrix p are equal or identical.

Transition matrix P raised to the power 2 (at k = 2)


P^(2) =\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]


P^(2) =\left[\begin{array}{ccc}0.2203&0.7797\\0.2034&0.7966\end{array}\right]

Transition matrix P raised to the power 3 (at k = 3)


P^(3) =\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]


P^(3) =\left[\begin{array}{ccc}0.2203&0.7797\\0.2034&0.7966\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]


P^(3) =\left[\begin{array}{ccc}0.2086&0.7914\\0.2064&0.7936\end{array}\right]

Transition matrix P raised to the power 4 (at k = 4)


P^(4) =\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]


P^(4) =\left[\begin{array}{ccc}0.2086&0.7914\\0.2064&0.7936\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]


P^(4) =\left[\begin{array}{ccc}0.2071&0.7929\\0.2068&0.7932\end{array}\right]

Transition matrix P raised to the power 5 (at k = 5)


P^(5) =\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]X\left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]


P^(5) =\left[\begin{array}{ccc}0.2071&0.7929\\0.2068&0.7932\end{array}\right] X \left[\begin{array}{ccc}0.31&0.69\\0.18&0.82\end{array}\right]


P^(5) =\left[\begin{array}{ccc}0.2069&0.7931\\0.2069&0.7931\end{array}\right]

P⁵ at k = 5 both the rows identical. Hence the stationary matrix S is:

S = [ 0.2069 , 0.7931 ]

User Frederic Maria
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories