Answer:
Explanation:
From the information given:
Mean
![\overline x = (\sum x_i)/(n)](https://img.qammunity.org/2021/formulas/mathematics/college/sunjm56t4pj5vuap9qbi84b06zu3l3keri.png)
Mean
![\overline x = (69+103+126+122+60+64)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/blk8hlwjwijno2umcu8g3ovu7kma8hf4zh.png)
Mean
![\overline x = (544)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/1xcn8e92rsc35f96lt8huqi472r6hkdi9f.png)
Mean
pounds
Standard deviation
![s = \sqrt{\frac {\sum (x_i - \overline x) ^2}{n-1}](https://img.qammunity.org/2021/formulas/mathematics/college/te9jst8g4nvu2p4biut5r7xnp7wz6ny6ow.png)
Standard deviation
![s = \sqrt{\frac {(69 - 90.67)^2+(103 - 90.67)^2+ (126- 90.67) ^2+ ..+ (64 - 90.67)^2}{6-1}}](https://img.qammunity.org/2021/formulas/mathematics/college/lsln3zjnzsr8kqyhkaqb2uccyv1lwk38cp.png)
Standard deviation s = 30.011 pounds
B) Find a 75% confidence interval for the population average weight of all adult mountain lions in the specified region.
At 75% confidence interval ; the level of significance ∝ = 1 - 0.75 = 0.25
= 0.25/2
= 0.125
t(0.125,5)=1.30
Degree of freedom = n - 1
Degree of freedom = 6 - 1
Degree of freedom = 5
Confidence interval =
![(\overline x - t_((\alpha/2)(n-1))((s)/(√(n)))< \mu < (\overline x + t_((\alpha/2)(n-1))((s)/(√(n)))](https://img.qammunity.org/2021/formulas/mathematics/college/kherr2uepz5y48nmcyp7qglq9ajce06er4.png)
Confidence interval =
![(90.67 - 1.30((30.011)/(√(6)))< \mu < (90.67+ 1.30((30.011)/(√(6)))](https://img.qammunity.org/2021/formulas/mathematics/college/eb01qej2fdyna1ifm7n5w62rgbnz5wvzze.png)
Confidence interval =
![(90.67 - 1.30(12.252})< \mu < (90.67+ 1.30(12.252})](https://img.qammunity.org/2021/formulas/mathematics/college/y99ltz5omv5k68agyw8g25hne1uwmyabfn.png)
Confidence interval =
![(90.67 - 15.9276 < \mu < (90.67+ 15.9276)](https://img.qammunity.org/2021/formulas/mathematics/college/35yfsi3yknue9rdwv20wa5ja4uuxnt4zu9.png)
Confidence interval =
![(74.7424 < \mu <106.5976)](https://img.qammunity.org/2021/formulas/mathematics/college/3dqco0c9b6z0k18jf87gg33rprc1fswa4g.png)
i.e the lower limit = 74.74 pounds
the upper limit = 106.60 pounds