Answer: = approx 0.2006
Explanation:
The probability that first 1 randomly selected calculator is defective is
P(1st defect)= 42/(42+20)=42/62=21/31
If the first calculator is defective the residual number of defective calculators is 42-1=41. The residual total number number of calculators is 62-1=61
So the probability that second calculator is defected
P(2nd defective)=41/61
If both previous calculators are defective the residual number of defective calculators is 42-2=40. Total residual number of calculators is 62-2=60
So the probability that third calculator is defected
P(3rd defective)=40/60=2/3
Finally the probability that also fourth calculator is defective is 39/59
P(4th defective)=39/59
The resulted probability that all 4 calculators are defective is
P(all 4 are defective)= P(1st defect)* P(2nd defect) * P(3rd defect)* P(4th defect)=21*41*2*39/(31*61*3*59)=67158/334707=0.200647... = approx 0.2006