Answer:
(a) A 95% confidence interval estimate of the percentage of orders that are not accurate is [0.125, 0.201].
(b) We can conclude that both restaurants can have the same inaccuracy rate due to the overlap of interval areas.
Explanation:
We are given that in a study of the accuracy of fast food drive-through orders, Restaurant A had 302 accurate orders and 59 orders that were not accurate.
Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;
P.Q. =
~ N(0,1)
where,
= sample proportion of orders that were not accurate =
= 0.163
n = sample of total orders = 302 + 59 = 361
p = population proportion of orders that are not accurate
Here for constructing a 95% confidence interval we have used a One-sample z-test for proportions.
So, 95% confidence interval for the population proportion, p is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level
of significance are -1.96 & 1.96}
P(-1.96 <
< 1.96) = 0.95
P(
<
<
) = 0.95
P(
< p <
) = 0.95
95% confidence interval for p = [
,
]
= [
,
]
= [0.125, 0.201]
(a) Therefore, a 95% confidence interval estimate of the percentage of orders that are not accurate is [0.125, 0.201].
(b) We are given that the 95% confidence interval for the percentage of orders that are not accurate at Restaurant B is [0.143 < p < 0.219].
Here we can observe that there is a common area of inaccurate order of 0.058 or 5.85% for both the restaurants.
So, we can conclude that both restaurants can have the same inaccuracy rate due to the overlap of interval areas.