Answer:
![Mean = 344](https://img.qammunity.org/2021/formulas/mathematics/college/n8yfweuxmoo5r4liy792qsrq27syxfptyq.png)
Explanation:
Given
![Population = 1013](https://img.qammunity.org/2021/formulas/mathematics/college/i6h5055zh014cyb6eym60wwx8v3p2mlmff.png)
Let p represents the proportion of those who worry about identity theft;
![p = 66\%](https://img.qammunity.org/2021/formulas/mathematics/college/cffa8tduecrr2i96dnltdwpc1z8o0stgg8.png)
Required
Mean of those who do not worry about identity theft
First, the proportion of those who do not worry, has to be calculated;
Represent this with q
In probability;
![p + q = 1](https://img.qammunity.org/2021/formulas/biology/college/nz8ivrf1ofhwcqcmd8zyumy1spaq4kb7c4.png)
Make q the subject of formula
![q = 1 - p](https://img.qammunity.org/2021/formulas/computers-and-technology/college/2ec13itvmjkvto13uo0onbtbwfkm7rvvrc.png)
Substitute
![p = 66\%](https://img.qammunity.org/2021/formulas/mathematics/college/cffa8tduecrr2i96dnltdwpc1z8o0stgg8.png)
![q = 1 - 66\%](https://img.qammunity.org/2021/formulas/mathematics/college/uyda6n88hw519g2qg2sdqgqq5gladhck09.png)
Convert percentage to fraction
![q = 1 - 0.66](https://img.qammunity.org/2021/formulas/mathematics/college/zcm2j200jhp6kwzyjnj577r9qbajblobld.png)
![q = 0.34](https://img.qammunity.org/2021/formulas/mathematics/college/3ym70sdyzcptfm06gndxq025zgh6zrrz4p.png)
Now, the mean can be calculated using:
![Mean = nq](https://img.qammunity.org/2021/formulas/mathematics/college/q6794xnc0gmrkbgdxbg6ov7horm2myl7ck.png)
Where n represents the population
![Mean = 1013 * 0.34](https://img.qammunity.org/2021/formulas/mathematics/college/rn3r7qmb22jvwamoj1qkgwdgihpcsy2zvk.png)
![Mean = 344.42](https://img.qammunity.org/2021/formulas/mathematics/college/nhr4whqynqezgci8bua8vraa2i07o2cu5z.png)
(Approximated)