198k views
0 votes
It takes 242. kJ/mol to break a chlorine-chlorine single bond. Calculate the maximum wavelength of light for which a chlorine-chlorine single bond could be broken by absorbing a single photon. Round your answer to 3 significant digits. single by absorbing a significant digit.

1 Answer

6 votes

Answer:

495nm

Step-by-step explanation:

The energy of a photon could be obtained by using:

E = hc / λ

Where E is energy of a photon, h is Planck's constant (6.626x10⁻³⁴Js), c is speed of the light (3x10⁸ms⁻¹) and λ is wavelength.

The energy to break 1 mole of Cl-Cl bonds is 242kJ = 242000J. The energy yo break a single bond is:

242000J/mol ₓ (1mol / 6.022x10²³bonds) = 4.0186x10⁻¹⁹J/bond.

Replacing in the equation:

E = hc / λ

4.0186x10⁻¹⁹J = 3x10⁸ms⁻¹ₓ6.626x10⁻³⁴Js / λ

λ = 4.946x10⁻⁷m

Is maximum wavelength of light that could break a Cl-Cl bond.

Usually, wavelength is given in nm (1x10⁻⁹m / 1nm). The wavelength in nm is:

4.946x10⁻⁷m ₓ (1nm / 1x10⁻⁹m) =

495nm

User Yogur
by
4.9k points