Answer:
0.0665 days
Step-by-step explanation:
We are given;
The mean distance from the Earth's center to the moon;a1 = 385000 km
The mean distance from the Earth's center to the space craft;a2 = 6965 km
Formula for kepplers third law is;
T² = 4π²a³/GM
However, the proportion of both distances would be;
(T1)²/(T2)² = (a1)³/(a2)³
Where;
T1 is the period of orbit of the moon around the earth. T1 has a standard value of 27.322 days
T2 is the period of the space craft orbit.
Making T2 the subject, we have;
T2 = √((T1)²×(a2)³)/(a1)³)
Thus, plugging in the relevant values;
T2 = √(27.322² × 6965³)/(385000)³
T2 = 0.0665 days