226k views
3 votes
Find the most general antiderivative of the function.
(x) = 3/5 - 8/x, x > 0

1 Answer

6 votes

Answer:


F = (3)/(5) x - 8\cdot \ln |x| + C

Explanation:

Let be
f(x) = (3)/(5)-(8)/(x) and
F is the antiderivative of
f(x) such that:

1)
F = \int {\left((3)/(5)-(8)/(x) \right)} \, dx Given.

2)
F = (3)/(5) \int \, dx -8\int {(dx)/(x) } (
\int {[f(x)+g(x)]} \, dx = \int {f(x)} \, dx + \int {g(x)} \, dx)

3)
F = (3)/(5) x - 8\cdot \ln |x| + C, where
C is the integration constant. (
\int {k} \, dx = k\cdot x;
\int {(dx)/(x) } = \ln|x|,
\int {k\cdot f(x)} \, dx = k\int {f(x)} \, dx) Result.

User Kevin Babcock
by
4.2k points