Answer:
P(X' < 4265) = 0.9418
Explanation:
Due to the fact that the population is normal, the distribution of the sample mean of 40 cars is;
X' = (x1 + x2 + x3....... + x40)/40
We are given;
Normal mean;μ = 4178 miles
Variance = 124,609
Standard deviation; σ = √variance = √124609 = 353
Formula for standard error of mean = σ/√n = 353/√40 = 55.814
So from the formula;
z = (x - μ)/(σ/√n)
So for P(X' < 4265) we have;
z-value of P(X' < 4265) = (4265 - 4178)/55.814 ≈ 1.56
From the z-table attached, we have for P(z < 1.56) = 0.94179
Approximating to 4 decimal places gives 0.9418