Answer:
(a) aₓ = 1.33 m/s² and aᵧ = -0.770 m/s²
(b) x = 0.665 m and y = 4.62 m
(c) 3.61 s
Step-by-step explanation:
(a) There are two ways we can solve this. The first way is to sum the forces in the x and y direction, then use the relation tan 30° = -aᵧ/aₓ, where aᵧ is the acceleration in the +y direction (up) and aₓ is the acceleration in the +x direction (right).
The second way is to sum the forces in the parallel and perpendicular directions to find the acceleration parallel to the incline, a. Then, use the relations aᵧ = -a sin 30° and aₓ = a cos 30°.
Let's try the first method. Sum of forces in the +y direction:
∑F = ma
N cos 30° + Nμ sin 30° − mg = maᵧ
N cos 30° + Nμ sin 30° − mg = -maₓ tan 30°
Sum of forces in the +x direction:
∑F = ma
N sin 30° − Nμ cos 30° = maₓ
Substituting:
N cos 30° + Nμ sin 30° − mg = -(N sin 30° − Nμ cos 30°) tan 30°
N cos 30° + Nμ sin 30° − mg = -N sin 30° tan 30° + Nμ sin 30°
N cos 30° − mg = -N sin 30° tan 30°
N (cos 30° + sin 30° tan 30°) = mg
N = mg / (cos 30° + sin 30° tan 30°)
N = (10 kg) (10 m/s²) / (cos 30° + sin 30° tan 30°)
N = 86.6 N
Now, solving for the accelerations:
N sin 30° − Nμ cos 30° = maₓ
aₓ = N (sin 30° − μ cos 30°) / m
aₓ = (86.6 N) (sin 30° − 0.4 cos 30°) / 10 kg
aₓ = 1.33 m/s²
N cos 30° + Nμ sin 30° − mg = maᵧ
aᵧ = N (cos 30° + μ sin 30°) / m − g
aᵧ = (86.6 N) (cos 30° + 0.4 sin 30°) / 10 kg − 10 m/s²
aᵧ = -0.770 m/s²
Now let's try the second method.
Sum of forces in the perpendicular direction:
∑F = ma
N − mg cos 30° = 0
N = mg cos 30°
Sum of forces in the parallel direction:
∑F = ma
mg sin 30° − Nμ = ma
mg sin 30° − mgμ cos 30° = ma
a = g (sin 30° − μ cos 30°)
a = (10 m/s²) (sin 30° − 0.4 cos 30°)
a = 1.536 m/s²
Solving for the accelerations:
aₓ = a cos 30°
aₓ = 1.33 m/s²
aᵧ = -a sin 30°
aᵧ = -0.770 m/s²
As you can see, the second method is faster and easier, but both methods will give you the same answer.
(b) In the x direction:
Given:
x₀ = 0 m
v₀ = 0 m/s
aₓ = 1.33 m/s²
t = 1 s
Find: x
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (1 s) + ½ (1.33 m/s²) (1 s)²
x = 0.665 m
In the y direction:
Given:
y₀ = 5 m
v₀ = 0 m/s
aᵧ = -0.770 m/s²
t = 1 s
Find: y
y = y₀ + v₀ t + ½ at²
y = 5 m + (0 m/s) (1 s) + ½ (-0.770 m/s²) (1 s)²
y = 4.62 m
(c) In the y direction:
Given:
y₀ = 5 m
y = 0 m
v₀ = 0 m/s
aᵧ = -0.770 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
0 m = 5 m + (0 m/s) t + ½ (-0.770 m/s²) t²
t = 3.61 s