Answer:
The speed of the particle is 2.86 m/s
Step-by-step explanation:
Given;
radius of the circular path, r = 2.0 m
tangential acceleration,
= 4.4 m/s²
total magnitude of the acceleration, a = 6.0 m/s²
Total acceleration is the vector sum of tangential acceleration and radial acceleration
![a = √(a_c^2 + a_t^2)\\\\](https://img.qammunity.org/2021/formulas/physics/college/i187eelmoi690owdb1l92mv76ikntpt0y2.png)
where;
is the radial acceleration
![a = √(a_c^2 + a_t^2)\\\\a^2 = a_c^2 + a_t^2\\\\a_c^2 = a^2 -a_t^2\\\\a_c = √(a^2 -a_t^2)\\\\a_c = √(6.0^2 -4.4^2)\\\\a_c = √(16.64)\\\\a_c = 4.08 \ m/s^2](https://img.qammunity.org/2021/formulas/physics/college/8wrfjaztx1xt6dud0cgb2wkvnj3n8qrji7.png)
The radial acceleration relates to speed of particle in the following equations;
![a_c = (v^2)/(r)](https://img.qammunity.org/2021/formulas/physics/college/kceo27b4ckfueld9tj4sqop9tn1y7rrbfh.png)
where;
v is the speed of the particle
![v^2 = a_c r\\\\v= √(a_c r) \\\\v = √(4.08 *2)\\\\v = 2.86 \ m/s](https://img.qammunity.org/2021/formulas/physics/college/tjcq00r2dmq0ne02vylq0r6kjq4gqebbgz.png)
Therefore, the speed of the particle is 2.86 m/s