122k views
0 votes
Consider the three dip1acement vectors A = (3i - 3j) m, B = (i-4j) m, and C = (-2i + 5j) m. Use the component method to determine:

(a) the magnitude and direction of the vector D=A+B+C and
(b) the magnitude and direction of E=-A - B + C.

1 Answer

4 votes

Answer:

(a)
\vec D = 2\,i - 2\,j, (b)
\vec E = -6\,i + 12\,j

Step-by-step explanation:

Let be
\vec A = 3\,i - 3\,j\,[m],
\vec B = i - 4\,j\,[m] and
\vec C = -2\,i + 5\,j \,[m], each resultant is found by using the component method:

(a)
\vec D = \vec A + \vec B + \vec C


\vec D = (3\,i - 3\,j) + (i-4\,j) + (-2\,i+5\,j)\,[m]


\vec D = (3\,i + i -2\,i)+(-3\,j-4\,j+5\,j)\,[m]


\vec D = (3 + 1 -2)\,i + (-3-4+5)\,j\,[m]


\vec D = 2\,i - 2\,j

(b)
\vec E = -\vec A - \vec B + \vec C


\vec E = -(3\,i-3\,j)-(i - 4\,j)+(-2\,i+5\,j)


\vec E = (-3\,i + 3\,j) +(-i+4\,j) + (-2\,i + 5\,j)


\vec E = (-3\,i-i-2\,i) + (3\,j+4\,j+5\,j)


\vec E = (-3-1-2)\,i + (3+4+5)\,j


\vec E = -6\,i + 12\,j

User Ribin Haridas
by
4.9k points