Answer:
C. NO2 + O3 → NO3 + O2 (slow)
NO3 + NO2 → N2O5 (fast)
Step-by-step explanation:
A reaction mechanism represents an amount of elementary steps that explain how a reaction proceeds. The mechanism must explain the experimental rate law. Also, the slow step is the rate determining step.
This rate law is obtained from the multiplication of the reactants in the slow step, thus:
A. NO2 + NO2 → N2O2 (fast)
N2O4 + O3 → N2O5 + O2 (slow)
Rate law:
rate = k [N2O4] [O3]
This mechanism is not consistent with rate law.
B. NO2 + O3 → NO5 (fast)
NO5 + NO5 → N2O5 + (5/2)O2 (slow)
Rate law:
rate = k [NO5]²
This mechanism is not consistent with rate law.
C. NO2 + O3 → NO3 + O2 (slow)
NO3 + NO2 → N2O5 (fast)
Rate law:
rate = k [NO2] [O3]
This mechanism is consistent with rate law.
D. NO2 + NO2 → N2O2 + O2 (slow)
N2O2 + O3 → N2O5 (fast)
Rate law:
rate = k [NO2]²
This mechanism is not consistent with rate law.
Thus, right solution is:
C. NO2 + O3 → NO3 + O2 (slow)
NO3 + NO2 → N2O5 (fast)