Answer:
2(cos30°+isin30°)
Explanation:
Complex value z is written in a rectangular form as z = x+iy where (x, y) is the rectangular coordinates.
On converting the rectangluar to polar form of the complex number;
x = rcosθ and y = rsinθ
Substituting in the rectangular form of the comlex number above;
z = rcosθ + irsinθ
z = r(cosθ+isinθ)
r is the modulus of the complex number and θ is the argument
r =√x²+y² and θ = tan⁻¹y/x
Given the complex number in rectangular form z = -(3)^1/2 - i
z = -√3 - i
x = -√3 and y = -1
r = √(-√3)²+(-1)²
r = √3+1
r = √4
r = 2
θ = tan⁻¹ (-1/-√3)
θ = tan⁻¹ (1/√3)
θ = 30°
Hence the complex number in polar form will be z = 2(cos30°+isin30°)