Answer:
B.
![100 = 132.12sin2\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/joz6dgtmcm2xfhquzwdhvao3vqmddya7zl.png)
Explanation:
Given the horizontal distance in meters traveled by a projectile modeled by the function
. If the initial velocity is 36 meters/second, the equation we would you use to find the angle needed to travel 100 meters is shown below;
![h = (v_o^(2) )/(4.9)sin\theta cos\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/u221el3fwo15dyk4nd6i60zfrjm9oaw72u.png)
from trigonometry identity,
![sin2\theta = 2sin\theta cos\theta\\sin\theta cos \theta = (sin2\theta)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qr5rb91wkq3tfjq3eoy87wtk06ozuvsgc1.png)
The equation will become;
![h = (v_o^(2) )/(2*4.9)(sin2\theta)\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/gzvkvv55alwdo9325u7fa6x7qxp16focsp.png)
![h = (v_o^(2) )/(2*4.9)sin2\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/ohainfz21hc2vi8toas40anxbu77xrcxzl.png)
Given h = 100 meters and v = 36 m/s
![100 = (36^(2) )/(9.8)sin2\theta\\100*9.8 = 1296sin2\theta\\100 = (1296)/(9.8) sin2\theta\\100 = 132.12sin2\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/m8q9aoo8w7kn2k527m1b1qpfdyvs935urm.png)