Answer: ($143.69, $156.31)
Explanation:
Confidence interval to estimate population mean :
![\overline{x}\ \pm z(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/s22nrh9q1qqx3r197x0wcvoe4yd8jtosdk.png)
, where
= population standard deviation
n= sample size
Sample mean
z= critical value.
As per given,
n= 40
= $15.50
$150
Critical value for 99% confidence level = 2.576
Then, 99% confidence interval for the population mean:
![150\pm(2.576)(15.50)/(√(40))\\\\\Rightarrow\ 150\pm6.31 \ \ (approx)\\\\\Rightarrow(150-6.31,150+6.31)=(143.69,156.31)](https://img.qammunity.org/2021/formulas/mathematics/college/jqcn0omjbcap5co6d03mi5jng7fbabzhvz.png)
Hence, the required confidence interval : ($143.69, $156.31)