Explanation:
The general form of a sine wave is:
y = A sin(2π/T x − B) + C
where A is the amplitude,
T is the period,
B is the phase (horizontal shift),
and C is the midline (vertical shift).
f(x) = 2 sin(πx)
This is a sine wave with an amplitude of 2, a period of 2, a phase of 0, and a midline of y=0.
To graph, the wave is centered at y=0 and has zeros every half period (x = 0, 1, 2, 3, etc.). Between the zeros, the wave is either a min or max (±2).
The domain of the function is (-∞, ∞).
The range of the function is [-2, 2].