Answer:
(g∘f)(x)=48x2+48x+10
(g∘f)(x)=12x^2-6
Explanation:
To find (f∘g)(x), use the definition of (f∘g)(x),
(f∘g)(x)=f(g(x))
Substituting 3x2−2 for g(x) gives
(f∘g)(x)=f(3x2−2)
Find f(3x2−2), where f(x)=4x+2, and simplify to get
(f∘g)(x)(f∘g)(x)(f∘g)(x)=4(3x2−2)+2=12x2−8+2=12x2−6
To find (g∘f)(x), use the definition of (g∘f)(x),
(g∘f)(x)=g(f(x))
Substituting 4x+2 for f(x) gives
(g∘f)(x)=g(4x+2)
Find g(4x+2), where g(x)=3x2−2, and simplify to get
(g∘f)(x)=3(4x+2)^2−2
(g∘f)(x)=48x2+48x+12−2
(g∘f)(x)=48x2+48x+10