63.0k views
3 votes
Triangle ABC has vertices A(-5, -2), B(7, -5), and C(3, 1). Find the coordinates of the intersection of the three altitudes

User Mdsingh
by
8.1k points

1 Answer

4 votes

Answer:

Orthocentre (intersection of altitudes) is at (37/10, 19/5)

Explanation:

Given three vertices of a triangle

A(-5, -2)

B(7, -5)

C(3, 1)

Solution A by geometry

Slope AB = (yb-ya) / (xb-xa) = (-5-(-2)) / (7-(-5)) = -3/12 = -1/4

Slope of line normal to AB, nab = -1/(-1/4) = 4

Altitude of AB = line through C normal to AB

(y-yc) = nab(x-xc)

y-1 = (4)(x-3)

y = 4x-11 .........................(1)

Slope BC = (yc-yb) / (xc-yb) = (1-(-5) / (3-7)= 6 / (-4) = -3/2

Slope of line normal to BC, nbc = -1 / (-3/2) = 2/3

Altitude of BC

(y-ya) = nbc(x-xa)

y-(-2) = (2/3)(x-(-5)

y = 2x/3 + 10/3 - 2

y = (2/3)(x+2) ........................(2)

Orthocentre is at the intersection of (1) & (2)

Equate right-hand sides

4x-11 = (2/3)(x+2)

Cross multiply and simplify

12x-33 = 2x+4

10x = 37

x = 37/10 ...................(3)

substitute (3) in (2)

y = (2/3)(37/10+2)

y=(2/3)(57/10)

y = 19/5 ......................(4)

Therefore the orthocentre is at (37/10, 19/5)

Alternative Solution B using vectors

Let the position vectors of the vertices represented by

a = <-5, -2>

b = <7, -5>

c = <3, 1>

and the position vector of the orthocentre, to be found

d = <x,y>

the line perpendicular to BC through A

(a-d).(b-c) = 0 "." is the dot product

expanding

<-5-x,-2-y>.<4,-6> = 0

simplifying

6y-4x-8 = 0 ...................(5)

Similarly, line perpendicular to CA through B

<b-d>.<c-a> = 0

<7-x,-5-y>.<8,3> = 0

Expand and simplify

-3y-8x+41 = 0 ..............(6)

Solve for x, (5) + 2(6)

-20x + 74 = 0

x = 37/10 .............(7)

Substitute (7) in (6)

-3y - 8(37/10) + 41 =0

3y = 114/10

y = 19/5 .............(8)

So orthocentre is at (37/10, 19/5) as in part A.

User Gagan Agrawal
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories