194k views
10 votes
Given: sin ∅= 4/5 and cos x = -5/13 ; evaluate the following expression.

tan( ∅ - x )

User Ashok Jeev
by
7.8k points

2 Answers

4 votes
  • cosø=3/5
  • sinx=12/13

Now

cos(ø-x)

  • cosøcosx+sinøsinx
  • (3/5)(-5/13)+(4/5)(12/13)
  • (33/65)

sin(ø-x)

  • sinøsinx-cosøcosx
  • 48/65+33/65
  • 81/65

So

tan(ø-x)

  • sin(ø-x)/cos(ø-x)
  • 81/65÷33/65
  • 81/33
  • 27/11
User Dmitry Zhukov
by
8.4k points
7 votes

By definition of tangent,

tan(θ - x) = sin(θ - x) / cos(θ - x)

Expand the sine and cosine terms using the angle sum identities,

sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y)

cos(x ± y) = cos(x) cos(y) ∓ sin(x) sin(y)

from which we get

tan(θ - x) = (sin(θ) cos(x) - cos(θ) sin(x)) / (cos(θ) cos(x) + sin(θ) sin(x))

Also recall the Pythagorean identity,

cos²(x) + sin²(x) = 1

from which we have two possible values for each of cos(θ) and sin(x):

cos(θ) = ± √(1 - sin²(θ)) = ± 3/5

sin(x) = ± √(1 - cos²(x)) = ± 12/13

Since there are 2 choices each for cos(θ) and sin(x), we'll have 4 possible values of tan(θ - x) :

• cos(θ) = 3/5, sin(x) = 12/13 :

tan(θ - x) = -56/33

• cos(θ) = -3/5, sin(x) = 12/13 :

tan(θ - x) = 16/63

• cos(θ) = 3/5, sin(x) = -12/13 :

tan(θ - x) = -16/63

• cos(θ) = -3/5, sin(x) = -12/13 :

tan(θ - x) = 56/33

User Bits
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories