Answer:
(A)
![N = -b = -(-13) = 13\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/rkcn1x6nr74revcu75oj50iqb6ygccdr8o.png)
![D =b^2 -4ac = (-13)^2 - 4(6)(5) = 169- 120 = 49](https://img.qammunity.org/2021/formulas/mathematics/college/k9fjdms4vqhkkxlsgyhkdxgjm6hi7cylju.png)
![M = 2a = 2(6) = 12](https://img.qammunity.org/2021/formulas/mathematics/college/9dndsae60ozml82xvrx17vw2thh3y6aw0m.png)
(B)
![$ x = ((5)/(3) , \: (1)/(2)) $](https://img.qammunity.org/2021/formulas/mathematics/college/qxpzoqrq4mlvy8xkpapv5w33don39zi4kb.png)
Explanation:
The given equation is
![6x^2 - 13x + 5 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/ltrtte36m93unci3ekhar0kd4za2g90kls.png)
The solution is of the form as given by
![$x=(N\pm√(D))/(M)$](https://img.qammunity.org/2021/formulas/mathematics/college/ll5gszakt6d6blog7h98kxwcu8s66rxc4z.png)
(A) Use the quadratic formula to solve this equation and find the appropriate integer values of N, M and D. Do not worry about simplifying the VD yet in this part of the problem.
The quadratic formula is given by
![$x=(-b\pm√(b^2-4ac))/(2a)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ye6x873fqejcv8fzlwz5fdgglwrn4ny1ec.png)
The equations of N, M and D are
![N = -b](https://img.qammunity.org/2021/formulas/mathematics/college/d1muy5t3xd2l202fe5zw32dtwcqof5t5jb.png)
![D =b^2 -4ac](https://img.qammunity.org/2021/formulas/mathematics/college/dudqtgq0coc08npvejqbpzhx29vkjly1vx.png)
![M = 2a](https://img.qammunity.org/2021/formulas/mathematics/college/htfcicnq9xuiqmhju4qpnv0v51dk1fkvxy.png)
The values of a, b and c are
![a = 6 \\\\b = -13 \\\\c = 5](https://img.qammunity.org/2021/formulas/mathematics/college/lyazt5pcfshpqv2vt9qb1zw6xosejbs3n7.png)
So,
![N = -b = -(-13) = 13\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/rkcn1x6nr74revcu75oj50iqb6ygccdr8o.png)
![D =b^2 -4ac = (-13)^2 - 4(6)(5) = 169- 120 = 49](https://img.qammunity.org/2021/formulas/mathematics/college/k9fjdms4vqhkkxlsgyhkdxgjm6hi7cylju.png)
![M = 2a = 2(6) = 12](https://img.qammunity.org/2021/formulas/mathematics/college/9dndsae60ozml82xvrx17vw2thh3y6aw0m.png)
(B) Now simplify the radical and the resulting solutions. Enter your answers as a list of integers or reduced fractions, separated with commas. Example: -5/2-3/4
N = 13
D = 49
M = 12
![$x=(13\pm√(49))/(12)$](https://img.qammunity.org/2021/formulas/mathematics/college/yp8ytev8u4rputw2shrr03g72tb9y65plg.png)
![$x=(13\pm7)/(12)$](https://img.qammunity.org/2021/formulas/mathematics/college/2otpoqgozfv9p1wx96ktvoegh9h876iidi.png)
and
![$ x=(13-7)/(12) $](https://img.qammunity.org/2021/formulas/mathematics/college/3x4t90boc4sdblgfn1ethu2ghg51mu1gqk.png)
and
![$ x=(6)/(12) $](https://img.qammunity.org/2021/formulas/mathematics/college/1103vboe0tys4118ag6pos2cpmmvictrpy.png)
and
![$ x=(1)/(2) $](https://img.qammunity.org/2021/formulas/mathematics/college/3wpu9oeshyj8zhv6fhqxltqc6kv4ljguki.png)
![$ x = ((5)/(3) , \: (1)/(2)) $](https://img.qammunity.org/2021/formulas/mathematics/college/qxpzoqrq4mlvy8xkpapv5w33don39zi4kb.png)