Answer:
![4√(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/njpl6tnd27i43r7j6m2bqrd8l2f9qs6g9h.png)
![(5 - √(3))/(11)](https://img.qammunity.org/2021/formulas/mathematics/high-school/u2lrpl0p5ds3thl35g2ikjtcem5smylsgx.png)
![(11(3 + √(5)))/(8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/86qwu8oa7kmpyvux5f1t4ptl9w1z67k5xv.png)
Explanation:
If you have a simple square root in the denominator, multiply the fraction by a fraction that is the root over the root.
![(12)/(√(3)) =](https://img.qammunity.org/2021/formulas/mathematics/high-school/phpohwibghhk8eper92qds1ycjrj5p2ps0.png)
![= (12)/(√(3)) * (√(3))/(√(3))](https://img.qammunity.org/2021/formulas/mathematics/high-school/9pfv6wzsyfc3qnip57xudnqdz32imormjs.png)
![= (12√(3))/(√(3)√(3))](https://img.qammunity.org/2021/formulas/mathematics/high-school/t9xj8m03ey1fqqerskh8g9hd67nx6j5ah7.png)
![= (12√(3))/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/v3810kfr79h8i2o6ulzxxf03wp6g9il0hy.png)
![= 4√(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/by2bh2llmmoiuxacz77l5b1fpellt8hd3i.png)
If you have a denominator consisting of a rational number plus a root, multiply the fraction by a fraction that is the denominator over the denominator in which you change only the sign outside the root.
![(2)/(5 + √(3)) =](https://img.qammunity.org/2021/formulas/mathematics/high-school/m6i3mbnyphvlznct4ogvdmfsjkc4x49q9a.png)
![= (2)/(5 + √(3)) * (5 - √(3))/(5 - √(3))](https://img.qammunity.org/2021/formulas/mathematics/high-school/hub8spz9x3fe7oltxe0zmo1eq99ipp4b09.png)
![= (2(5 - √(3)))/((5 + √(3))(5 - √(3)))](https://img.qammunity.org/2021/formulas/mathematics/high-school/lbzwewjjf1qksj5bsddkgx176onii0os9r.png)
![= (2(5 - √(3)))/(25 - 3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/u2kirg7okcpsmvuqdjzvorpaf0xgjutur8.png)
![= (2(5 - √(3)))/(22)](https://img.qammunity.org/2021/formulas/mathematics/high-school/iy2j45bulxy188349up5cok3rpmiq1oy14.png)
![= (5 - √(3))/(11)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ar1qx1pnlge1kbecgkrut2m8ko9ued0lwe.png)
![(11)/(6 - 2√(5)) =](https://img.qammunity.org/2021/formulas/mathematics/high-school/3mgod2yrwkrtcrss1d5e6g3ze2d152pyre.png)
![= (11)/(6 - 2√(5)) * (6 + 2√(5))/(6 + 2√(5))](https://img.qammunity.org/2021/formulas/mathematics/high-school/9r3ne7vd7oed1ogjo01fqt5fp12xz9tgt8.png)
![= (11(6 + 2√(5)))/((6 - 2√(5))(6 + 2√(5)))](https://img.qammunity.org/2021/formulas/mathematics/high-school/8carf63ikewdt9ut2g4c52a1ymg0epuyhf.png)
![= (22(3 + √(5)))/(36 - 4 * 5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/w0fodhcvnb5z6040oiy1n5ieacwsayhjha.png)
![= (22(3 + √(5)))/(36 - 20)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kxr7urx9pzdu4yy1zl21ue736y87xr97gz.png)
![= (22(3 + √(5)))/(16)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kttwv2a3ir54bbf9fuon8b94zmpj91e5v3.png)
![= (11(3 + √(5)))/(8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/h311wop00i7ochibb5v6lp5anponmog5qu.png)