225k views
1 vote
Evaluate each limit. Give exact answers.

Evaluate each limit. Give exact answers.-example-1
User Vizllx
by
8.0k points

1 Answer

4 votes

Answer:

Given that 1 and 4 are vertical asymtotes we have;

(a) -∞

(b) +∞

(c) +∞

(d) -∞

Explanation:

(a) For the function;


\lim_(x\rightarrow 4^(-))\left ((2\cdot x^(2)+13\cdot x+20)/(x^(2)-5\cdot x+4) \right )

We have the denominator given by the expression, x² - 5·x + 4 which can be factorized as (x - 4)(x - 1)

Therefore, as the function approaches 4 from the left [lim (x → 4⁻)] gives;


\lim_(x\rightarrow 4^(-))\left ((2\cdot x^(2)+13\cdot x+20)/((x - 1)\cdot (x - 4)) \right )
\lim_(x\rightarrow 4^(-))\left ((2\cdot x^(2)+13\cdot x+20)/((3.999 - 1)\cdot (3.999 - 4)) \right )
\lim_(x\rightarrow 4^(-))\left ((2\cdot x^(2)+13\cdot x+20)/((2.999)\cdot (-0.001)) \right )
=- \infty

(b) Similarly, we have;


\lim_(x\rightarrow 4^(+))\left ((2\cdot x^(2)+13\cdot x+20)/(x^(2)-5\cdot x+4) \right )

We have the denominator given by the expression, x² - 5·x + 4 which can be factorized as (x - 4)(x - 1)

Therefore, as the function approaches 4 from the right [lim (x → 4⁺)] gives;


\lim_(x\rightarrow 4^(+))\left ((2\cdot x^(2)+13\cdot x+20)/((x - 1)\cdot (x - 4)) \right )
\lim_(x\rightarrow 4^(+))\left ((2\cdot x^(2)+13\cdot x+20)/((4.0001 - 1)\cdot (4.0001 - 4)) \right )
\lim_(x\rightarrow 4^(+))\left ((2\cdot x^(2)+13\cdot x+20)/((3.0001)\cdot (0.0001)) \right )
= +\infty

(c)


\lim_(x\rightarrow 1^(-))\left ((2\cdot x^(2)+13\cdot x+20)/(x^(2)-5\cdot x+4) \right )

We have the denominator given by the expression, x² - 5·x + 4 which can be factorized as (x - 4)(x - 1)

Therefore, as the function approaches 1 from the left [lim (x → 1⁻)] gives;


\lim_(x\rightarrow 1 ^(-))\left ((2\cdot x^(2)+13\cdot x+20)/((x - 1)\cdot (x - 4)) \right )
\lim_(x\rightarrow 1^(-))\left ((2\cdot x^(2)+13\cdot x+20)/((0.999 - 1)\cdot (0.999 - 4)) \right )
\lim_(x\rightarrow 4^(+))\left ((2\cdot x^(2)+13\cdot x+20)/((-0.001)\cdot (-3.001)) \right )
=+ \infty

(d) As the function approaches 1 from the right [lim (x → 1⁺)]

We have;


\lim_(x\rightarrow 1^(+))\left ((2\cdot x^(2)+13\cdot x+20)/((1.0001 - 1)\cdot (1.0001 - 4)) \right )=
\lim_(x\rightarrow 1^(+))\left ((2\cdot x^(2)+13\cdot x+20)/((0.0001)\cdot (-2.999)) \right ) =- \infty

User Jalanga
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories