Answer:
Given that 1 and 4 are vertical asymtotes we have;
(a) -∞
(b) +∞
(c) +∞
(d) -∞
Explanation:
(a) For the function;
![\lim_(x\rightarrow 4^(-))\left ((2\cdot x^(2)+13\cdot x+20)/(x^(2)-5\cdot x+4) \right )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gn86tockgdhd6rsck0h85tu916b05je8fd.png)
We have the denominator given by the expression, x² - 5·x + 4 which can be factorized as (x - 4)(x - 1)
Therefore, as the function approaches 4 from the left [lim (x → 4⁻)] gives;
![\lim_(x\rightarrow 4^(-))\left ((2\cdot x^(2)+13\cdot x+20)/((2.999)\cdot (-0.001)) \right )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zf0a742hqeb1pmslqt76byhxccbuwtshru.png)
![=- \infty](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ozx95ji6uxizpl3pdi24v308qxpasldl5p.png)
(b) Similarly, we have;
![\lim_(x\rightarrow 4^(+))\left ((2\cdot x^(2)+13\cdot x+20)/(x^(2)-5\cdot x+4) \right )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qnat3s1wp98odqp60u1b10et2pnq10hg6e.png)
We have the denominator given by the expression, x² - 5·x + 4 which can be factorized as (x - 4)(x - 1)
Therefore, as the function approaches 4 from the right [lim (x → 4⁺)] gives;
![\lim_(x\rightarrow 4^(+))\left ((2\cdot x^(2)+13\cdot x+20)/((3.0001)\cdot (0.0001)) \right )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5jh5eld10rq1zcfludtzaw2fpzxy0ikm00.png)
(c)
![\lim_(x\rightarrow 1^(-))\left ((2\cdot x^(2)+13\cdot x+20)/(x^(2)-5\cdot x+4) \right )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/drbhpbopdue6xmrmeqfg6cac4flgut7fcn.png)
We have the denominator given by the expression, x² - 5·x + 4 which can be factorized as (x - 4)(x - 1)
Therefore, as the function approaches 1 from the left [lim (x → 1⁻)] gives;
![\lim_(x\rightarrow 4^(+))\left ((2\cdot x^(2)+13\cdot x+20)/((-0.001)\cdot (-3.001)) \right )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2f5hoqm25edjarl3nvfg01qp1jcibgqru8.png)
![=+ \infty](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wxoizk3ruoshzuoh7rstewfy11rm3i6gqn.png)
(d) As the function approaches 1 from the right [lim (x → 1⁺)]
We have;
=