Answer:
![AB = (11)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8or90mfigwbktx9fxk26glpmdssf4hwu7m.png)
Explanation:
Given
The above diagram
![AB = 3y + 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/pqubb85gxpzypbmhvd2b3ljr9eu6czk2fm.png)
![AC = 11y](https://img.qammunity.org/2021/formulas/mathematics/high-school/pppv9rj1t4ekdf2w7gym73ved6d4xe7cng.png)
Required
Determine length AB
Tangents drawn from the same point of a circle are equal;
This implies that
![AB = AC](https://img.qammunity.org/2021/formulas/mathematics/high-school/aj2uiboagm1dv9tqy5n4u427ovvqty0nwf.png)
Substitute values for AB and AC
![3y + 4 =11y](https://img.qammunity.org/2021/formulas/mathematics/high-school/evagegpviz8gu6rrteb4mvur9wp45up9ta.png)
Subtract 3y from both sides
![3y - 3y + 4 = 11y - 3y](https://img.qammunity.org/2021/formulas/mathematics/high-school/af6gvezoe0x0glapg80s53wbp1n25vgnxa.png)
![4 = 8y](https://img.qammunity.org/2021/formulas/mathematics/high-school/k3b8nkbvq3a1a1h9hgkyx08f5ptm3un5l4.png)
Divide both sides by 8
![(4)/(8) = (8y)/(8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/93wgd5qzvoohk48d1ekl3rtrr55ux6m8mn.png)
![(4)/(8) = y](https://img.qammunity.org/2021/formulas/mathematics/high-school/9thedx1nxhxrq1165yrxrl7bnv9nd46efv.png)
![(1)/(2) = y](https://img.qammunity.org/2021/formulas/mathematics/high-school/1qy9t08kucsqyv4l8g1yhfed4y1dbm6jzn.png)
Substitute
for y in
![AB = 3y + 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/pqubb85gxpzypbmhvd2b3ljr9eu6czk2fm.png)
![AB = 3 * (1)/(2) + 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/58e6yobei7w7lks2jw2ko6y84x0aeqsopg.png)
![AB = (3)/(2) + 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/5gxsrquavymix61jaa8asn49hr5tlalqu7.png)
![AB = (3 + 8)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/t9dj6tze9ydhttsr007etahb8v8jrttsn7.png)
![AB = (11)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8or90mfigwbktx9fxk26glpmdssf4hwu7m.png)