73.5k views
2 votes
A^2 + b^2 + c^2 = 2(a − b − c) − 3. (1) Calculate the value of 2a − 3b + 4c.

1 Answer

4 votes

Answer:


2a - 3b + 4c = 1

Explanation:

Given


a^2 + b^2 + c^2 = 2(a - b - c) - 3

Required

Determine
2a - 3b + 4c


a^2 + b^2 + c^2 = 2(a - b - c) - 3

Open bracket


a^2 + b^2 + c^2 = 2a - 2b - 2c - 3

Equate the equation to 0


a^2 + b^2 + c^2 - 2a + 2b + 2c + 3 = 0

Express 3 as 1 + 1 + 1


a^2 + b^2 + c^2 - 2a + 2b + 2c + 1 + 1 + 1 = 0

Collect like terms


a^2 - 2a + 1 + b^2 + 2b + 1 + c^2 + 2c + 1 = 0

Group each terms


(a^2 - 2a + 1) + (b^2 + 2b + 1) + (c^2 + 2c + 1) = 0

Factorize (starting with the first bracket)


(a^2 - a -a + 1) + (b^2 + 2b + 1) + (c^2 + 2c + 1) = 0


(a(a - 1) -1(a - 1)) + (b^2 + 2b + 1) + (c^2 + 2c + 1) = 0


((a - 1) (a - 1)) + (b^2 + 2b + 1) + (c^2 + 2c + 1) = 0


((a - 1)^2) + (b^2 + 2b + 1) + (c^2 + 2c + 1) = 0


((a - 1)^2) + (b^2 + b+b + 1) + (c^2 + 2c + 1) = 0


((a - 1)^2) + (b(b + 1)+1(b + 1)) + (c^2 + 2c + 1) = 0


((a - 1)^2) + ((b + 1)(b + 1)) + (c^2 + 2c + 1) = 0


((a - 1)^2) + ((b + 1)^2) + (c^2 + 2c + 1) = 0


((a - 1)^2) + ((b + 1)^2) + (c^2 + c+c + 1) = 0


((a - 1)^2) + ((b + 1)^2) + (c(c + 1)+1(c + 1)) = 0


((a - 1)^2) + ((b + 1)^2) + ((c + 1)(c + 1)) = 0


((a - 1)^2) + ((b + 1)^2) + ((c + 1)^2) = 0

Express 0 as 0 + 0 + 0


(a - 1)^2 + (b + 1)^2 + (c + 1)^2 = 0 + 0+ 0

By comparison


(a - 1)^2 = 0


(b + 1)^2 = 0


(c + 1)^2 = 0

Solving for
(a - 1)^2 = 0

Take square root of both sides


a - 1 = 0

Add 1 to both sides


a - 1 + 1 = 0 + 1


a = 1

Solving for
(b + 1)^2 = 0

Take square root of both sides


b + 1 = 0

Subtract 1 from both sides


b + 1 - 1 = 0 - 1


b = -1

Solving for
(c + 1)^2 = 0

Take square root of both sides


c + 1 = 0

Subtract 1 from both sides


c + 1 - 1 = 0 - 1


c = -1

Substitute the values of a, b and c in
2a - 3b + 4c


2a - 3b + 4c = 2(1) - 3(-1) + 4(-1)


2a - 3b + 4c = 2 +3 -4


2a - 3b + 4c = 1

User Almeida
by
3.5k points