186k views
4 votes
The following balanced equation describes the reduction of iron(III) oxide to molten iron within a blast furnace: Fe2O3(s) + 3CO(g) ---> 2Fe(l) + 3CO2(g) Steve inserts 450. g of iron(III) oxide and 260. g of carbon monoxide into the blast furnace. After cooling the pure liquid iron, Steve determines that he has produced 288g of iron ingots. How much of the excess reactant (in grams) is left over after the theoretical yield of liquid iron is produced?

User Hellodan
by
4.8k points

1 Answer

2 votes

Answer:

Amount of excess Carbon (ii) oxide left over = 23.75 g

Step-by-step explanation:

Equation of the reaction: Fe₂O₃ + 3CO ----> 2Fe + 3CO₂

Molar mass of Fe₂O₃ = 160 g/mol;

Molar mass of Carbon (ii) oxide = 28 g/mol

From the equation of reaction, 1 mole of Fe₂O₃ reacts with 3 moles of carbon (ii) oxide; i.e. 160 g of iron (iii) oxide reacts with 84 g (3 * 28 g) of carbon (ii) oxide

450 g of Fe₂O₃ will react with 450 * 84/180) g of carbon (ii) oxide = 236..25 g of carbon (ii) oxide

Therefore the excess reactant is carbon (ii) oxide.

Amount of excess Carbon (ii) oxide left over = 260 - 236.25

Amount of excess Carbon (ii) oxide left over = 23.75 g

User Peter Bloomfield
by
4.5k points