145k views
3 votes
Q1) How much heat is released when 6.38 grams of Ag(s) (m.m = 107.9 g/mol) reacts by the equation shown below at

standard state conditions?
4A9 (s) + 2H,Sq) + O2(g)
2Ag $(s) + 2H200)
Substance
AHof (kJ/mol)
-20.6
H259)
Ag2S (5)
H200
-32.6
-285.8
a)
8.80 KI
b) 69.9 kJ
C) 22.1 kJ
d) 90.8 kJ
e) 40.5 kJ​

User Odemaris
by
8.2k points

1 Answer

5 votes

Answer:

The correct answer is -8.80 kJ.

Step-by-step explanation:

The ΔH° can be determined by using the formula,

ΔH°rxn = ΔH°f (products) - ΔH°f(reactants)

Based on the given information, the ΔH°f of H2S(g) is -20.6, for Ag2S (s) is -32.6 and for H2O (l) is -285.8 kJ/mole.

Now putting the values we get,

= [2 molΔH°f (Ag2S) + 2 molΔH°f (H2O)] - [4 molΔH°f(Ag) + 2 molΔH°f(H2S) + 1 molΔH°f(O2)]

=[2 mol (-32.6 kJ/mol) + 2 mol(-285.8 kJ/mol)] - [4 mol(0.00 kJ/mol) + 2 mol (-20.6 kJ/mol) + 1 mol (0.00 kJ/mol)

= [(-65.2 kJ) + (-571.6 kJ)] - [(-41.2 kJ)]

= -595.6 kJ

Thus, the enthalpy change of -595.6 kJ takes place when 4 mol of Ag reacts by the equation mentioned.

The mass of Ag given is 6.38 grams, the molecular mass of Ag is 107.9 g/mol. The formula for calculating moles is,

Moles = mass/molar mass

= 6.38 g / 107.9 g/mol

= 0.0591 mol

Now the change in enthalpy when 0.0591 mol of Ag reacts by the given reaction is (-595.6 kJ/4 mol) × 0.0591 mol = -8.80 kJ

The negative sign indicates that the heat is released in the process. Therefore, the -8.80 kJ of heat is released by 6.38 grams of Ag in the given case.

User Tracy
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.