188k views
4 votes
50.0ml each of 1.0M Hcl and 1.0M Naoh at room temperature (20.0c) are mixed the temperature of the resulting Nacl solutions increase to 27.5c

the density if the resulting Nacl solutuion 1.02 g/ml
the specific heat of the resulting Nacl solutions is 4.06j/gc
calculate the heat of neutralisation of hcl and naoh in kj/mol nacl products​

User WillMonge
by
6.3k points

1 Answer

4 votes

Answer:

62.12kJ/mol

Step-by-step explanation:

The neutralization reaction of HCl and NaOH is:

HCl + NaOH → NaCl + H₂O + HEAT

You can find the released heat of the reaction and heat of neutralization (Released heat per mole of reaction) using the formula:

Q = C×m×ΔT

Where Q is heat, C specific heat of the solution (4.06J/gºC), m its mass and ΔT change in temperature (27.5ºC-20.0ºC = 7.5ºC).

The mass of the solution can be finded with the volume of the solution (50.0mL of HCl solution + 50.0mL of NaOH solution = 100.0mL) and its density (1.02g/mL), thus:

100.0mL × (1.02g / mL) = 102g of solution.

Replacing, heat produced in the reaction was:

Q = C×m×ΔT

Q = 4.06J/gºC×102g×7.5ºC

Q = 3106J = 3.106kJ of heat are released.

There are 50.0mL ×1M = 50.0mmoles = 0.0500 moles of HCl and NaOH that are reacting releasing 3.106kJ of heat. That means heat of neutralization is:

3.106kJ / 0.0500mol of reaction =

62.12kJ/mol is heat of neutralization

User Erdogant
by
7.8k points