53.0k views
4 votes
With steps , please.

With steps , please.-example-1
User Amr Bahaa
by
8.2k points

1 Answer

2 votes


\bold{\text{Answer:}\quad x=(1)/(2),\quad y=1,\quad z=(1)/(3)}

Explanation:


\text{Equation 1:}\quad (x)/(x+y)=(1)/(3y)\\\\\\.\qquad \qquad \qquad 3xy=x+y\\\\.\qquad \qquad \qquad 3xy-y=x\\\\.\qquad \qquad \qquad y(3x-1)=x\\\\.\qquad \qquad \qquad y=(x)/(3x-1)


\text{Equation 2:}\quad (y)/(y+z)=(1)/(4z)\\\\\\.\qquad \qquad \qquad 4yz=y+z\\\\.\qquad \qquad \qquad 4yz-y=z\\\\.\qquad \qquad \qquad y(4z-1)=z\\\\.\qquad \qquad \qquad y=(z)/(4z-1)


\text{Equation 3:}\quad (z)/(z+x)=(1)/(5x)\\\\\\.\qquad \qquad \qquad 5xz=z+x\\\\.\qquad \qquad \qquad 5xz-z=x\\\\.\qquad \qquad \qquad z(5x-1)=x\\\\.\qquad \qquad \qquad z=(x)/(5x-1)

Set Equation 1 equal to Equation 2 and substitute z per Equation 3


(x)/(3x-1)=(z)/(4z-1)\\\\\\x(4z-1)=z(3x-1)\\\\4xz-x=3xz-z\\\\4x\bigg((x)/(5x-1)\bigg)-x=3x\bigg((x)/(5x-1)\bigg)-(x)/(5x-1)\\\\\\4x^2-x(5x-1)=3x^2-x\\\\4x^2-5x^2+x=3x^2-x\\\\0=4x^2-2x\\\\0=2x(2x-1)\\\\0=2x\qquad\qquad 0=2x-1\\\\x=0\qquad \qquad x=(1)/(2)

Solve for y when x = 0:


\text{Equation 1:}\quad y=(0)/(3(0)-1)\quad \rightarrow \quad y=0

Notice that x + y is in the denominator and denominator cannot equal zero so x = 0 is an invalid solution.


\text{Solve for y when}\ x=(1)/(2):\\\\\text{Equation 1:}\quad y=((1)/(2))/(3((1)/(2))-1)\quad \rightarrow \quad y=1


\text{Solve for z when x = (1)/(2)}:\\\text{Equation 3:}\quad z=((1)/(2))/(5((1)/(2))-1)\quad \rightarrow \quad z=(1)/(3)
\text{Solve for z when}\ x=(1)/(2):\\\\\text{Equation 3:}\quad z=((1)/(2))/(5((1)/(2))-1)\quad \rightarrow \quad z=(1)/(3)

User Jemru
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories