Answer:
the value of the series;
![\sum_(k=1)^(6)(25-k^2) = 59](https://img.qammunity.org/2021/formulas/mathematics/college/9kerjj2ydxqqki620tsxxbfv9hkwwuavjx.png)
C) 59
Explanation:
Recall that;
![\sum_(1)^(n)a_n = a_1+a_2+...+a_n\\](https://img.qammunity.org/2021/formulas/mathematics/college/xgx37vcsrgfnxkrt8cmcxo4czkeil2w9wq.png)
Therefore, we can evaluate the series;
![\sum_(k=1)^(6)(25-k^2)](https://img.qammunity.org/2021/formulas/mathematics/college/csqfa04mpi390fuykuowz2p8xurbdrpsxd.png)
by summing the values of the series within that interval.
the values of the series are evaluated by substituting the corresponding values of k into the equation.
![\sum_(k=1)^(6)(25-k^2) =(25-1^2)+(25-2^2)+(25-3^2)+(25-4^2)+(25-5^2)+(25-6^2)\\\sum_(k=1)^(6)(25-k^2) =(25-1)+(25-4)+(25-9)+(25-16)+(25-25)+(25-36)\\\sum_(k=1)^(6)(25-k^2) =24+21+16+9+0+(-11)\\\sum_(k=1)^(6)(25-k^2) = 59\\](https://img.qammunity.org/2021/formulas/mathematics/college/5qf6gi6j7xxihkzgdn1vjez5dcsiygdzrg.png)
So, the value of the series;
![\sum_(k=1)^(6)(25-k^2) = 59](https://img.qammunity.org/2021/formulas/mathematics/college/9kerjj2ydxqqki620tsxxbfv9hkwwuavjx.png)