Answer:
C. This is true. If there is more than one entry equal to 0, all powers of P will contain 0 entries. Hence, there is no power k for which Upper P Superscript k contains all positive entries. That is, P will not satisfy the definition of a regular matrix if it has more than one 0
Explanation:
The correct option is C as it represents that by considering a matrix P that involves more than one zero and at the same time the powers for all P has received minimum one zero or it included at least one zero
Therefore the statement C verified and hence it is to be considered to be valid
Hence, all the other statements are incorrect